Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 504: 153801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614204

RESUMEN

Heated tobacco products (HTPs) are non-combustible, inhaled tobacco products that generate an aerosol with fewer and lower levels of toxicants, with a potential to reduce risk relative to cigarette smoking. Here, we assessed in vitro toxicological effects of three menthol (glo neo neoCLICK, neo Smooth Menthol and Fresh Menthol) and one non-menthol (neo Smooth Tobacco) variants of glo HTP, along with market comparators for cigarettes and HTPs. Limited chemical characterization of the study products revealed significantly lower levels of acetaldehyde, acrolein, crotanaldehyde and formaldehyde in test samples from HTPs than those from cigarettes. The glo HTPs were non-mutagenic in the bacterial reverse mutagenesis assay. Although, the whole aerosol exposures of glo HTPs were classified as genotoxic in the in vitro micronucleus assay, and cytotoxic in the NRU (monolayer) and MTT (3 dimensional EpiAirway™ tissues) assays, the cigarette comparators were the most toxic study products in each of these assessments. Further, glo HTPs elicited oxidative stress responses only at the highest dose tested, whereas the cigarette comparators were potent inducers of oxidative stress at substantially lower doses in the EpiAirway tissues. The comparator (non-glo) HTP results were similar to the glo HTPs in these assays. Thus, the glo HTPs exhibit substantially lower toxicity compared to cigarettes.


Asunto(s)
Mentol , Productos de Tabaco , Mentol/toxicidad , Productos de Tabaco/toxicidad , Humanos , Calor , Estrés Oxidativo/efectos de los fármacos , Nicotiana/toxicidad , Nicotiana/química , Aerosoles , Supervivencia Celular/efectos de los fármacos , Pruebas de Micronúcleos , Animales
2.
Toxics ; 12(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38393224

RESUMEN

Assessment of in vitro cytotoxicity is an important component of tobacco product toxicological evaluations. However, current methods of regulatory testing involve exposing monolayer cell cultures to various preparations of aerosols from cigarettes or other emerging products such as electronic nicotine delivery systems (ENDS), which are not representative of human exposure. In the present study, a whole aerosol (WA) system was used to expose lung epithelial cultures (2D and 3D) to determine the potential of six Vuse Alto ENDS products that varied in nicotine content (1.8%, 2.4%, and 5%) and flavors (Golden Tobacco, Rich Tobacco, Menthol, and Mixed Berry), along with a marketed ENDS and a marked cigarette comparator to induce cytotoxicity and oxidative stress. The WA from the Vuse Alto ENDS products was not cytotoxic in the NRU and MTT assays, nor did it activate the Nrf2 reporter gene, a marker of oxidative stress. In summary, Vuse Alto ENDS products did not induce cytotoxic or oxidative stress responses in the in vitro models. The WA exposures used in the 3D in vitro models described herein may be better suited than 2D models for the determination of cytotoxicity and other in vitro functional endpoints and represent alternative models for regulatory evaluation of tobacco products.

3.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36821083

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Nicotina/toxicidad , Aerosoles/toxicidad , Técnicas In Vitro
4.
Drug Test Anal ; 15(10): 1175-1188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35830202

RESUMEN

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Nicotiana , Aerosoles , Técnicas In Vitro
5.
Toxicol Rep ; 9: 1985-1992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518380

RESUMEN

The rapid development associated with Next Generation Tobacco Products (NGTP) has necessitated the development of high throughput methodologies to test their genotoxic potential in vitro when compared to conventional cigarette smoke (CS). An assessment of two Vitrocell® Mammalian 6/48 exposure modules in three independent experiments was made by comparing results from multiple dosimetric techniques applied to aerosol generated from 3R4F Kentucky Reference cigarettes, commercially available electronically heated tobacco product (eHTP) and Electronic Nicotine Delivery System (ENDS) using the Vitrocell® VC10®. Real-time aerosol particle concentration was assessed by means of light scattering photometers and expressed as area under the curve (∑AUC). Nicotine concentrations were determined analytically by LC/MS. Humectant amount and distribution was assessed for eHTP and ENDS by the quantification of free glycerol in a phosphate buffered saline (PBS) trap, whereas total particulate matter (TPM) was assessed in the 3R4F cigarettes by the fluorescence of the particulate at 485 nm in anhydrous dimethyl sulfoxide (DMSO) trap within the exposure. Dose was adjusted by means of the addition of ambient air to dilute the whole smoke/aerosol in L/min and sampled into the system at a rate of 5 mL/min. Dilution of CS ranged from 8.0 to 0.5 L/min and for the eHTP and ENDS ranged from 4 to 0 L/min (undiluted). Dosimetric analysis of the system showed good concordance within replicates (p-values ranged from p = 0.3762 to p = 0.8926) and showed that the Vitrocell® Mammalian 6/48 is a viable means for genotoxic assessment of aerosol generated from both conventional cigarettes and NGTP. Results demonstrate the need to tailor dosimetry approaches to different aerosols due to variations in the physio-chemical composition, with a multi-dosimetry approach recommended.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35914858

RESUMEN

No cigarette smoke test matrix is without limitation, due to the complexity of the starting aerosol and phase to phase dynamics. It is impossible to capture all chemicals at the same level of efficiency, therefore, any test matrix will inadvertently or by design fractionate the test aerosol. This case study examines how four different test matrices derived from cigarette smoke can be directly compared. The test matrices assessed were as follows, total particulate matter (TPM), gas vapour phase (GVP), a combination of TPM + GVP and whole aerosol (WA). Here we use an example assay, the mouse lymphoma assay (MLA) to demonstrate that data generated across four cigarette smoke test matrices can be compared. The results show that all test matrices were able to induce positive mutational events, but with clear differences in the biological activity (both potency and toxicity) between them. TPM was deemed the most potent test article and by extension, the particulate phase is interpreted as the main driver of genotoxic induced responses in the MLA. However, the results highlight that the vapour phase is also active. MLA appeared responsive to WA, with potentially lower potency, compared to TPM approaches. However, this observation is caveated in that the WA approaches used for comparison were made on a newly developed experimental method using dose calculations. The TPM + GVP matrix had comparable activity to TPM alone, but interestingly induced a greater number of mutational events at comparable relative total growth (RTG) and TPM-equivalent doses when compared to other test matrices. In conclusion, this case study highlights the importance of understanding test matrices in response to the biological assay being assessed and we note that not all test matrices are equal.


Asunto(s)
Linfoma , Productos de Tabaco , Aerosoles , Animales , Bioensayo , Linfoma/inducido químicamente , Ratones , Material Particulado/toxicidad , Nicotiana/toxicidad , Productos de Tabaco/toxicidad
7.
Toxicol Rep ; 6: 1281-1288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828014

RESUMEN

The Vitrocell® VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI) and air agar interface (AAI) exposure that mimic in vivo conditions for assessing toxicological impact of whole smoke using in vitro assays. The aim of this study was to investigate and compare multiple dosimetry techniques that may be employed during combustible cigarette whole smoke exposure using the Vitrocell® VC10® smoking robot. The following techniques were assessed: (1) quartz crystal microbalances (QCMs), (2) aerosol photometers (using area under curve, AUC), and (3) fluorescence of anhydrous dimethyl sulfoxide (DMSO)-captured smoke constituents. Results showed that each of the dosimetry techniques was able to distinguish different levels of whole smoke airflow in a concentration-related manner. When compared to each other, the three techniques showed a high level of consistency and all were considered efficient tools in quantifying dose during an exposure, although higher variation was observed at the higher airflows tested. Overall, the dosimetry tools investigated here provide effective measures of the whole smoke concentrations tested during the exposure.

8.
Food Chem Toxicol ; 132: 110584, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31228600

RESUMEN

Conduct of the mouse lymphoma assay (MLA) is underpinned by Organisation for Economic Co-operation and Development (OECD) Test Guideline 490 and International Conference on Harmonisation S2(R1) guidance and is a recognised in vitro genotoxicity test battery assay. It has been used on a limited number of occasions for the assessment of some tobacco and nicotine products, such as e-cigarettes and tobacco heating products (THP). The aim of this study was to assess the suitability of the MLA for genotoxicity testing with a variety of tobacco and nicotine products. Total particulate matter (TPM) from a 3R4F cigarette was compared against a commercial electronic cigarette liquid (e-liquid), electronic cigarette (e-cigarette) aerosol matter captured from the same e-liquid, and TPM from a commercial THP. Treatment conditions included 3 h exposures with and without metabolic activation and a longer 24 h exposure without metabolic activation (-S9) at concentrations up to 500 µg/mL. Under all treatment conditions, 3R4F produced a clear positive response with regard to induction of mutation. In contrast, no marked induction of mutation was observed for the e-liquid, e-cigarette aerosol or THP. Additionally, data are presented as a function of nicotine equivalents for comparisons between these different tobacco products and test matrices.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Material Particulado/toxicidad , Productos de Tabaco/toxicidad , Contaminación por Humo de Tabaco/efectos adversos , Animales , Línea Celular Tumoral , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Pruebas de Mutagenicidad , Nicotina/toxicidad , Ratas Sprague-Dawley
9.
Food Chem Toxicol ; 132: 110546, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31163219

RESUMEN

In this study, a variety of test matrices from tobacco and nicotine delivery products were assessed against a 3R4F Kentucky reference cigarette using the in vitro micronucleus assay. Testing was conducted using two Chinese hamster cell lines (CHO and V79), and a human lymphoblastoid cell line (TK6), in accordance with established guidelines. Total particulate matter (TPM) from a 3R4F Reference cigarette was compared to an electronic cigarette e-liquid, electronic cigarette TPM and TPM from a commercial tobacco heating product using a standard and an extended treatment condition with recovery period. Cells were assessed with 3R4F TPM prior to assessment of the other tobacco and nicotine product test matrices. These cell lines gave varied responses to 3R4F TPM with the most robust response using V79 cells. The use of an extended exposure/recovery period was seen to increase assay sensitivity for CHO and V79 cell lines but was less clear for TK6 cells. Negative responses were observed for all products except 3R4F across all treatment conditions in V79 cells. The most potent response to cigarette smoke was following extended treatment with recovery, suggesting this may be a more appropriate treatment for the future assessment of tobacco and nicotine product test matrices.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Material Particulado/toxicidad , Productos de Tabaco/toxicidad , Contaminación por Humo de Tabaco/efectos adversos , Animales , Células CHO , Cricetulus , Humanos , Masculino , Pruebas de Micronúcleos , Mitocondrias/efectos de los fármacos , Material Particulado/análisis , Ratas Sprague-Dawley , Productos de Tabaco/análisis , Contaminación por Humo de Tabaco/análisis
10.
Toxicol In Vitro ; 56: 19-29, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30576853

RESUMEN

The assessment of potential cytotoxicity or genotoxicity of combustible tobacco products has historically been performed using partitioned exposures (i.e. total particulate matter [TPM], gas vapor phase [GVP]) rather than whole smoke. The VITROCELL® VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI) or air agar interface (AAI) exposure to mimic in vivo-like conditions for assessing the toxicological impact of whole smoke using in vitro assays (e.g. cytotoxicity, mutagenicity and DNA modifications). The aims of this study were to investigate dosimetry during whole smoke exposure in the VITROCELL® VC10® smoking robot using quartz crystal microbalances (QCMs) and to support the use of photometers for concurrent assessment of 'dose' during whole smoke exposures. QCM results showed consistent deposition across different exposure chambers, between dilution bars, experiments and modules. Higher levels of variation were noted at higher airflows (i.e., >8 L/min). Dosimetry assessed using photometers also showed a high level of consistency between experiments, with no notable impact on deposition on the QCM when the photometers were placed 'in-line' between the dilution bar and the exposure module. However, the use of photometers alone may be not be sufficient to estimate deposition; the predictability of the data-generated equation was poor. Further development of dosimetry methodology and information for use in validated in vitro biological test methods is needed to facilitate on-going aerosol-based research and relative assessment.


Asunto(s)
Bioensayo/instrumentación , Humo/efectos adversos , Fumar , Pruebas de Toxicidad/instrumentación , Bioensayo/métodos , Robótica , Productos de Tabaco , Pruebas de Toxicidad/métodos
11.
Int J Environ Res Public Health ; 11(11): 11325-47, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25361047

RESUMEN

The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina/efectos adversos , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Dispositivos para Dejar de Fumar Tabaco/efectos adversos , Tabaco sin Humo/toxicidad , Aerosoles/análisis , Animales , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetulus , ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad , Humo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...